التحليل الطيفي لمعادلة كوشي الخطية في فضاءات هيلبرت

Authors

  • سهام صالح القبلاوي قسم الرياضيات ، كلية العلوم والموارد الطبيعية ، جامعة الجفارة ، المعمورة، ليبيا Author
  • أسماء مصطفى ابوعضلة قسم الرياضيات ، كلية العلوم والموارد الطبيعية ، جامعة الجفارة ، المعمورة، ليبيا Author
  • انتصار معمر مكاري قسم الرياضيات ، كلية العلوم والموارد الطبيعية ، جامعة الجفارة ، المعمورة، ليبيا Author
  • جبريل سليم امبارك قسم الحاسب الالي ، كلية العلوم والموارد الطبيعية ، جامعة الجفارة ، المعمورة، ليبيا Author

DOI:

https://doi.org/10.65405/hpth7498

Keywords:

Spectroscopy, Linear Cauchy equation, Hilbert spaces, Indeterminate operators, Stability of solutions, Systems theory

Abstract

This research aims to study the spectroscopy of the Cauchy linear equation within Hilbert spaces, by integrating the concepts of spectroscopy and operator theory within the framework of partial differential equations. The Cauchy linear equation is an essential mathematical model for understanding the evolution of dynamic systems over time, as it is widely used in quantum physics, systems theory, and mathematical engineering. This paper examines the impact of spectrum on the evolution and stability of solutions in systems with infinite dimensions, focusing on specific and non-specific actuators, and analyzing the eigenvalues and associated eigenvalues. The study provides an integrated mathematical framework for interpreting the relationship between spectrum and solution stability, while demonstrating practical applications in the analysis of physical systems, heat and wave equations. It also discusses advanced theories in spectroscopy such as Friedman's theory, extending concepts to multidimensional spaces. The results conclude that spectrum properties play a pivotal role in determining the behavior of time solutions and the stability of mathematical and physical systems.

Downloads

Download data is not yet available.

References

أولا: المراجع العربية:

فضاء هلبرت وبعض المتتاليات التي تكون حلول لبعض المعادلات التفاضلية،ذكريات عبد المولى سالم العيساوي، رمضان محمد النعاس، African J ourrnal of Advanced Applied Sciences ( AJAPAS)(2024)

تانيا: المراجع الأجنبية:

Cheverry, C., & Raymond, N. (2020). A guide to spectral theory: Applications and exercises. Université de Rennes. Retrieved from

Kowalski, E. (2019). Spectral theory in Hilbert spaces. ETH Zürich. Retrieved from

Davies, E. B. (2010). Linear operators and their spectra. University of London. Retrieved from

Chiba, H. (2011). A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions. arXiv preprint arXiv:1107.5858. Retrieved from

Charak, K. S., Kumar, R., & Rochon, D. (2012). Infinite dimensional bicomplex spectral decomposition theorem. arXiv preprint arXiv:1206.4542. Retrieved from

Pandey, S. K., & Paulsen, V. I. (2015). A spectral characterization of AN operators. arXiv preprint arXiv:1501.05869. Retrieved from

Circelli, F. (2022). Essential self-adjointness of linear operators on Hilbert spaces and spectral theory (Doctoral dissertation, Australian National University). Retrieved from http://hdl.handle.net/1885/282457

Sunder, V. S. (2018). Functional analysis: Spectral theory. Institute of Mathematical Sciences, Chennai. Retrieved from

Stable Spectral Methods for Time‑Dependent Problems and the Preservation of Structure. Foundations of Computational Mathematics, 25, 683–723 (2025).

Springer Nature Link

On the spectral theory in the Fock space with polynomial eigenfunctions. Boletín de la Sociedad Matemática Mexicana, 31 (2025).

Springer Nature Link

Linear systems, spectral curves and determinants. Integral Equations and Operator Theory (Dec. 2025).

Springer Nature Link

Vidya, T. (2025). Recent Developments in Spectral Theory: A Functional Analysis Approach to Operators on Hilbert Spaces. Universal Research Reports.

urr.shodhsagar.com

Huo, Q., Ren, G., & Sabadini, I. (2025). Octonionic Para‑linear Self‑Adjoint Operators and Spectral Decomposition. arXiv.

arxiv.org

Cîmpean, I., Grecu, A., & Marin, L. (2025). A probabilistic approach to spectral analysis of Cauchy‑type inverse problems: Convergence and stability. arXiv. �

arxiv.org

Pituk, M. (2025). Spectral characterization of shadowing for linear operators on Hilbert spaces. arXiv.

arxiv.org

On the Computation of Geometric Features of Spectra of Linear Operators on Hilbert Spaces. Foundations of Computational Mathematics, 24, 723–804 (2024).

Downloads

Published

2026-01-12

How to Cite

التحليل الطيفي لمعادلة كوشي الخطية في فضاءات هيلبرت. (2026). Comprehensive Journal of Science, 10(ملحق 38), 2250-2260. https://doi.org/10.65405/hpth7498