التحليل الطيفي لمعادلة كوشي الخطية في فضاءات هيلبرت
DOI:
https://doi.org/10.65405/hpth7498Keywords:
Spectroscopy, Linear Cauchy equation, Hilbert spaces, Indeterminate operators, Stability of solutions, Systems theoryAbstract
This research aims to study the spectroscopy of the Cauchy linear equation within Hilbert spaces, by integrating the concepts of spectroscopy and operator theory within the framework of partial differential equations. The Cauchy linear equation is an essential mathematical model for understanding the evolution of dynamic systems over time, as it is widely used in quantum physics, systems theory, and mathematical engineering. This paper examines the impact of spectrum on the evolution and stability of solutions in systems with infinite dimensions, focusing on specific and non-specific actuators, and analyzing the eigenvalues and associated eigenvalues. The study provides an integrated mathematical framework for interpreting the relationship between spectrum and solution stability, while demonstrating practical applications in the analysis of physical systems, heat and wave equations. It also discusses advanced theories in spectroscopy such as Friedman's theory, extending concepts to multidimensional spaces. The results conclude that spectrum properties play a pivotal role in determining the behavior of time solutions and the stability of mathematical and physical systems.
Downloads
References
أولا: المراجع العربية:
فضاء هلبرت وبعض المتتاليات التي تكون حلول لبعض المعادلات التفاضلية،ذكريات عبد المولى سالم العيساوي، رمضان محمد النعاس، African J ourrnal of Advanced Applied Sciences ( AJAPAS)(2024)
تانيا: المراجع الأجنبية:
Cheverry, C., & Raymond, N. (2020). A guide to spectral theory: Applications and exercises. Université de Rennes. Retrieved from
Kowalski, E. (2019). Spectral theory in Hilbert spaces. ETH Zürich. Retrieved from
Davies, E. B. (2010). Linear operators and their spectra. University of London. Retrieved from
Chiba, H. (2011). A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions. arXiv preprint arXiv:1107.5858. Retrieved from
Charak, K. S., Kumar, R., & Rochon, D. (2012). Infinite dimensional bicomplex spectral decomposition theorem. arXiv preprint arXiv:1206.4542. Retrieved from
Pandey, S. K., & Paulsen, V. I. (2015). A spectral characterization of AN operators. arXiv preprint arXiv:1501.05869. Retrieved from
Circelli, F. (2022). Essential self-adjointness of linear operators on Hilbert spaces and spectral theory (Doctoral dissertation, Australian National University). Retrieved from http://hdl.handle.net/1885/282457
Sunder, V. S. (2018). Functional analysis: Spectral theory. Institute of Mathematical Sciences, Chennai. Retrieved from
Stable Spectral Methods for Time‑Dependent Problems and the Preservation of Structure. Foundations of Computational Mathematics, 25, 683–723 (2025).
Springer Nature Link
On the spectral theory in the Fock space with polynomial eigenfunctions. Boletín de la Sociedad Matemática Mexicana, 31 (2025).
Springer Nature Link
Linear systems, spectral curves and determinants. Integral Equations and Operator Theory (Dec. 2025).
Springer Nature Link
Vidya, T. (2025). Recent Developments in Spectral Theory: A Functional Analysis Approach to Operators on Hilbert Spaces. Universal Research Reports.
urr.shodhsagar.com
Huo, Q., Ren, G., & Sabadini, I. (2025). Octonionic Para‑linear Self‑Adjoint Operators and Spectral Decomposition. arXiv.
arxiv.org
Cîmpean, I., Grecu, A., & Marin, L. (2025). A probabilistic approach to spectral analysis of Cauchy‑type inverse problems: Convergence and stability. arXiv. �
arxiv.org
Pituk, M. (2025). Spectral characterization of shadowing for linear operators on Hilbert spaces. arXiv.
arxiv.org
On the Computation of Geometric Features of Spectra of Linear Operators on Hilbert Spaces. Foundations of Computational Mathematics, 24, 723–804 (2024).
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Comprehensive Journal of Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.









