Technological and Structural Solutions for High-Frequency, High-Power, and Optoelectronic Gallium Nitride Devices
DOI:
https://doi.org/10.65405/7b3w1f83Keywords:
gallium nitride, technology, device structure, sensor, modeling.Abstract
The advantages and disadvantages of using gallium nitride (GaN) in comparison with other semiconductor materials of microelectronics are described. It is shown that the high thermal, chemical, and radiation resistance of GaN makes it possible to manufacture devices operating at elevated temperatures and under extreme conditions, while high thermal conductivity simplifies cooling of the active region. The combination of high electron mobility and a high breakdown electric field makes GaN suitable for manufacturing high-power, high-frequency, and high-temperature transistors. Design solutions and technological methods for forming GaN-based devices are presented.
Downloads
References
1.Jayant Baliga B. Fundamentals of Power Semiconductor Devices 2008th // Springer, 1069p.
2.Turkin A. N. Nitrid galliya kak odin iz perspektivnyh materialov v sovremennoj optoehlektronike // Komponenty i tekhnologii. 2011. №5. (in Russ.).
3.Ansel'm A. I. Vvedenie v teoriyu poluprovodnikov // Moskva, 1978, 618 s. (in Russ.).
4.LED Lighting, LED Technology, SiC & GaN Power, RF Solutions | Cree, Inc [site]. URL : http://www.cree.com/ (date of access: 05.12.2017).
5.30-W/mm GaN HEMTs by field plate optimization / Y.-F. Wu, A. Saxler, M. Moore [et al.] // IEEE Electron Devices Lett. 2004. № 11 (25). P. 117–119.
6.Evalution of the temperature stability of AlGaN/GaN heterostructure FETs / I. Daumiller, C. Kirchner, M. Kamp [et al.] // IEEE Electron Device Lett. 1999. № 9. P.440–450.
7.Lu W., Kumar V., Piner E.L., Adesida I. DC, RF, and microwave noise performance of AlGaN-GaN field effect transistors dependence of aluminum concentration // IEEE Trans. Elec. Devices. 2003. № 4 (50). P. 1069–1074.
8.Adesida I., Lu W., Kumar V. – 6 Int. Conf. on Solid_State and IC Technology Proc., 2001, p.1163–1168.
9.Wide bandgap semiconductor devices and MMICs for RF Power Applications (Invited) / J. W. Palmour [et al.] // IEDM. 2001. P. 385–391.
10.High voltage RF operation of AlGaN/GaN heterostructure FETs / M. Kuzuhara, H. Miyamoto, Y. Ando [et al.] // Phys. Stat. Sol. 2003. № 1 (200). P. 161–167.
11.Danilin V. N., Dokuchaev Yu. P., Zhukova T. A., Komarov M. A. Moshchnye vysokotemperaturnye i radiacionnostojkie SVCh-pribory novogo pokoleniya na shirokozonnyh geteroperekhodnyh strukturah AlGaN/GaN // Obzory po ehlektronnoj tekhnike. Ser.1. SVCh-tekhnika. 2001. vyp.1. (in Russ.).
12.Ammono [site]. URL : https://www.ammono.com/ (date of access: 05.12.2017).
13.Технологическая компания «Тринитри» [site]. URL : http://www.trinitri.ru/ (date of access: 04.12.2017 ).
14.Binari S. C., Klein P. B., Kazior T. E. Trapping Effects in GaN and SiC Microwave FETs // Proceedings of the IEEE. 2002. № 6 (90). P. 1048–1058.
15.Reduction of current collapse in AlGaN/GaN heterostructure FETs / J. S. Lee, J. W. Kim, J. H. Lee [et al.] // Electron. Lett. 2003. № 9 (39). P. 750–752.
16.Osobennosti hlorid-gidridnoj ehpitaksii nitridnyh materialov na podlozhke kremniya / M. G. Mynbaeva, A. A. Golovatenko, A. I. Pechnikov [i dr.] // Fizika i tekhnika poluprovodnikov. 2014. № 11 (48). S. 1573– 1577. (in Russ.).
17.Chung J. W. et al. GaN-on-Si Technology, A New Approach for Advanced Devices in Energy and Communications // Proc. of the European Solid-State Device Research Conf. 2010 (ESSDERC). 2010. P. 52–56.
18.Taking S. AlN/GaN MOS-HEMTs Technology // Glasgow Theses Service, 2012. 175 p.
19.Tekhnologiya izdelij integral'noj ehlektroniki / L. P. Anufriev, S. V. Bordusov [i dr.] pod red. akademika NAN Belarusi A. P. Dostanko i chlena-korrespondenta NAN Belarusi L. I. Gurskogo // Minsk : «Integralpoligraf». 2009. 379 s. (in Russ.).
20.Shchuka A. A. Nanoehlektronika : uchebnoe posobie / M.: BINOM. Laboratoriya znanij, 2012. 342 s. (Nanotekhnologii). (in Russ.).
21.Parikh P., Mishra U., Wu Y. Insulating gate AlGaN/Gan HEMT // United States Patent. 2007. № 7,230,284.
22.Sravnenie svojstv svetodiodnyh kristallov AlGaInN vertikal'noj i flip-chip konstrukcii s ispol'zovaniem kremniya v kachestve platy-nositelya / L. K. Markov [i dr.] // Fizika i tekhnika poluprovodnikov. 2013. № 3 (47). S. 386–391. (in Russ.).
23.Gromov D. V., Matveev Yu. A., Nazarova G. N. Issledovanie vliyaniya ioniziruyushchih izluchenij na harakteristiki geterostrukturnyh polevyh tranzistorov na nitride galliya // Institut ehkstremal'noj prikladnoj ehlektroniki NIYAU «MIFI»; Nacional'nyj issledovatel'skij yadernyj universitet «MIFI». MEHS -2012. Moskva, 2012. (in Russ.).
24.Konstruktivno-tekhnologicheskie osobennosti sensornyh ustrojstv na osnove shirokozonnyh poluprovodnikov / V. S. Volchyok [ i dr.] // Doklady BGUIR. 2015. № 7(93). S. 99–105. (in Russ.).
25.Volchyok V. S., Dao Din' Ha, Lovshenko I. Yu., Stempickij V. R. Konstruktivno-tekhnologicheskie osobennosti sensornyh ustrojstv na osnove shirokozonnyh poluprovodnikov // Doklady BGUIR. 2015. № 7(93). S. 99–105. (in Russ.).
26.Volchyok V. S., Stempickij V. R. Optimizaciya konstrukcii tranzistora s vysokoj podvizhnost'yu ehlektronov, obespechivayushchej snizhenie vliyaniya ehffekta samorazogreva // SVCh-tekhnika i telekommunikacionnye tekhnologii (KryMiKo’2016). 2016. S. 1600–1606. (in Russ.).
27.Volchek V., Dao Dinh Ha, Stempitsky V., Tran Tuan Trung. Suppression of the self-heating effect in AlGaN/GaN high electron mobility transistor by diamond heat sink layers // 2016 International Conference on Advanced Technologies for Communications (ATC). 2016. P. 264–267.
28.Volchyok V. S., Stempickij V. R. Optimizaciya konstrukcii AlGaN/GaN HEMT, obespechivayushchaya snizhenie vliyaniya ehffekta samorazogreva s ispol'zovaniem teplootvodyashchih ehlementov na osnove grafena // Nitridy galliya, indiya i alyuminiya – struktury i pribory. 2017. S. 122–123. (in Russ.).
29.Volchyok V. S., Stempickij V. R. Ehlektricheskie i chastotnye svojstva tranzistora s vysokoj podvizhnost'yu ehlektronov s grafenovymi teplootvodyashchimi ehlementami // Sovremennye problemy radioehlektroniki. 2017. S. 500–503. (in Russ.).
30.Volcheck V. S., Stempitsky V. R. Suppression of the self-heating effect in GaN HEMT by few-layer graphene heat spreading elements // J. Phys.: Conf. Ser. 2017. Vol. 917.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Comprehensive Journal of Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.









