Antibacterial Efficacy of Zingiber officinale and Syzygium aromaticum Extracts Against Clinically Isolated Staphylococcus aureus and Escherichia coli: A Comparative Study with Standard Antibiotics
DOI:
https://doi.org/10.65405/radas333Keywords:
Medicinal plants, Antimicrobial resistance, Phytochemicals, MRSA, ESBL, Natural productsAbstract
The emergence of antibiotic-resistant pathogens necessitates exploration of alternative therapeutics. This study evaluated the antibacterial potential of ethanolic extracts from Zingiber officinale (ginger) rhizomes and Syzygium aromaticum (clove) flower buds against clinically isolated Staphylococcus aureus (including MRSA) and Escherichia coli (including ESBL-producing strains) using standardized microbiological assays. Disk diffusion results demonstrated significant antibacterial activity, with clove extract (5% w/v) exhibiting the highest efficacy against S. aureus (21.67±2.89 mm inhibition zone), followed by ginger extract (15.00±4.36 mm at 10% w/v). Against E. coli, clove flowers showed moderate activity (20.00±5.00 mm), while ginger displayed limited effect (3.33±1.53 mm at 10% w/v). Broth microdilution assays revealed MIC values of 25-100 μg/mL and MBC values of 0.15-0.73 μg/mL. Comparative analysis with standard antibiotics (ampicillin, gentamicin, streptomycin) indicated that while streptomycin remained most effective (30.67±2.08 mm), plant extracts demonstrated comparable activity to ampicillin against Gram-positive pathogens. These findings substantiate the potential of ginger and clove extracts as complementary antimicrobial agents, particularly against drug-resistant Gram-positive bacteria, while showing the need for further investigation of their mechanisms and potential synergies with conventional antibiotics.
Downloads
References
1. Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and Chemical Toxicology, 46(2), 409-420. https://doi.org/10.1016/j.fct.2007.09.085.
2. Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969-976. https://doi.org/10.1128/AAC.01009-09
3. Clinical and Laboratory Standards Institute. (2022). Performance standards for antimicrobial susceptibility testing (32nd ed.). CLSI document M100.
4. Cortés-Rojas, D. F., de Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): A precious spice. Asian Pacific Journal of Tropical Biomedicine, 4(2), 90-96. https://doi.org/10.1016/S2221-1691(14)60215-X
4. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582. https://doi.org/10.1128/CMR.12.4.564
5. Deans, S. G., & Ritchie, G. (1987). Antibacterial properties of plant essential oils. International Journal of Food Microbiology, 5(2), 165-180. https://doi.org/10.1016/0168-1605(87)90034-1
6. Domadia, P. N., Swarup, S., Bhunia, A., Sivaraman, J., & Dasgupta, D. (2007). Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochemical Pharmacology, 74(6), 831-840. https://doi.org/10.1016/j.bcp.2007.06.029
7. European Committee on Antimicrobial Susceptibility Testing. (2023). Breakpoint tables for interpretation of MICs and zone diameters. https://www.eucast.org
8. Gill, A. O., & Holley, R. A. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology, 108(1), 1-9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009
9. Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15(8), 639-652. https://doi.org/10.1016/j.phymed.2008.06.008
10. Karuppiah, P., & Mustaffa, M. (2013). Antibacterial and antioxidant activities of Zingiber officinale Roscoe. Asian Pacific Journal of Tropical Biomedicine, 3(4), 316-320. https://doi.org/10.1016/S2221-1691(13)60069-3
11. Li, X. Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical Microbiology Reviews, 28(2), 337-418. https://doi.org/10.1128/CMR.00117-14
12. Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., ... & Nabavi, S. M. (2017). Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Critical Reviews in Microbiology, 43(6), 668-689. https://doi.org/10.1080/1040841X.2017.1295225
13. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
14. Pagès, J. M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nature Reviews Microbiology, 6(12), 893-903. https://doi.org/10.1038/nrmicro1994
15. Prasad, S., & Tyagi, A. K. (2015). Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterology Research and Practice, 2015, 142979. https://doi.org/10.1155/2015/142979
16. Solecki, R. S., & Shanidar, I. V. (1975). A Neanderthal flower burial in northern Iraq. Science, 190(4217), 880-881. https://doi.org/10.1126/science.190.4217.880
17. World Health Organization. (2020). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
18. Yassen, D., Al-Halbosiy, M., & Al-Hadeethi, H. (2016). Antibacterial activity of crude extracts of ginger (Zingiber officinale Roscoe) on Escherichia coli and Staphylococcus aureus: A study in vitro. Indo American Journal of Pharmaceutical Research, 6(8), 6431-6436.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Comprehensive Journal of Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








